On a general class of multivariate linear smoothing operators
نویسندگان
چکیده
منابع مشابه
On a General Class of Linear and Positive Operators
Suppose that (Lm)m≥1 is a given sequence of linear and positive operators. Starting with the mentioned sequence, the new sequence (Km)m≥1 of linear and positive operators is constructed. For the operators (Km)m≥1 a convergence theorem and a Voronovskaja-type theorem are established. As particular cases of the general construction, we refined the Bernstein’s operators, the Stancu’s operators, th...
متن کاملon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولA Class of compact operators on homogeneous spaces
Let $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and $H$ be a compact subgroup of $G$. For an admissible wavelet $zeta$ for $varpi$ and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.
متن کاملA comparative study of fuzzy norms of linear operators on a fuzzy normed linear spaces
In the present paper, we rst modify the concepts of weakly fuzzy boundedness, strongly fuzzy boundedness, fuzzy continuity, strongly fuzzy continuity and weakly fuzzy continuity. Then, we try to nd some relations by making a comparative study of the fuzzy norms of linear operators.
متن کاملAbout a class of linear positive operators
In this paper we construct a class of linear positive operators (Lm)m≥1 with the help of some nodes. We study the convergence and we demonstrate the Voronovskaja-type theorem for them. By particularization, we obtain some known operators. 2000 Mathematics Subject Classification: 41A10, 41A25, 41A35, 41A36.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1988
ISSN: 0021-9045
DOI: 10.1016/0021-9045(88)90109-8